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J. Phys. A: Math. Gen. 22 (1989) 4243-4256. Printed in the U K  

Finite-size effects in a non-half-filled Hubbard chain 

F Woynarovich 
Central Research Institute for Physics, POB 49, H-1525 Budapest 114, Hungary 

Received 14 February 1989 

Abstract. The finite-size effects in the spectrum of a Hubbard chain are obtained for both 
the repulsive and attractive cases. It is shown that the finite-size corrections-similar to 
the case of a Heisenberg chain or Bose gas-are non-analytic unless some conditions are 
imposed on the chemical potential, magnetic field and chain length. If these conditions 
are met, the spectrum shows a similar tower structure as expected in conformal theories, 
although the model in general is not conformally invariant. In the special case when the 
two Fermi velocities are equal, the model is conformally invariant with c = 2, the indices 
are similar to the Gaussian form and there are four marginal operators. 

1. Introduction 

In the understanding of the critical two-dimensional classical and (1 + 1)-dimensional 
quantum systems the concept of conformal symmetry put forward by Belavin et al 
(1984) has proven to be a very fruitful one. This symmetry provides an abstract 
classification according to the central charge (c) of the Virasoro algebra describing 
the conformal symmetry of the system (Friedan et a1 1984). The conformal anomaly 
c and the scaling dimensions of the primary-order parameters are directly accessible 
through the finite-size effects in an affiliated system defined on an infinitely long but 
finitely wide strip (Blote et al 1986, Affleck 1986). These results have prompted several 
groups to study the finite-size effects both numerically and analytically in different 
critical and conformally invariant systems. 

A condition for a critical system to be also conformally invariant is that the group 
velocity be the same for all elementary excitations. If this holds, the spectrum of the 
Hamiltonian for a chain of length N (in 2~ statistical systems, the spectrum of the 
logarithm of the transfer matrix acting along the infinitely long strip of width N) 
should have the so-called tower structure (Cardy 1986a, b) which in the most general 
case (Bogoliubov et a1 1988, Berkovich and Murthy 1988) means 
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Here E,,f is the ground-state energy density of the infinite system and Eo is the 
ground-state energy of the finite one, x, and s, are the scaling dimensions and spins 
of the primary scaling operators, Nf and N -  are non-negative integers, D is the 
number of particles moved from one Fermi point to the other, P is the momentum of 
the system, vF is the Fermi velocity and c is the central charge (conformal anomaly). 

There are several examples for systems which are critical, but do not show conformal 
symmetry. These are systems in which there are several kinds of excitations, all 
posessing linear dispersion, but the different excitations have different velocities. Prime 
examples for such systems are the I D  spin-4 Fermi gas with 6 interaction or its lattice 
version, the Hubbard chain. In these systems there are two kinds of excitations, one 
connected with the charge degrees of freedom, the other with the spins. Both are 
fermion-like but they have different Fermi velocities. These systems are not conformally 
invariant but are expected to be treatable in terms of two conformal fields (Korepin 
et al 1988). 

In the present work we study the spectrum of the Hubbard chain. It is known that 
in the half-filled case the charge excitations possess a gap (Woynarovich 1982a, b, 
1983a, b), only the spin excitations are critical and they have a spectrum of the form 
(1.1)-(1.3) with c = 1 and x,, s, ofthe Gaussian form (Woynarovich and Eckle 1987b). 
Now, to have both degrees of freedom critical, we study the non-half-filled band, and 
to have the possible most general case we introduce also a magnetic field. Thus the 
Hamiltonian is 

N N 

fi = - c c (c:+l,ucl,u+ C ; t & + I , J  + U c nqnll 
r = l  U I = I  

(1.4) 

where c ~ , ~  (v = .1 or t) are the spin-; fermion operators at site i, niT and nil are the 
numbers of up and down spin particles at site i, and p and h are the chemical potential 
and magnetic field, respectively. 

As is well known, this system is exactly treatable by the Bethe ansatz (Lieb and 
Wu 1968), and by now there is also a well established method to calculate the finite-size 
corrections in Bethe ansatz systems (de Vega and Woynarovich 1985, Woynarovich 
and Eckle 1987a). Treating the model this way we have determined the low-lying part 
(scaling with 1 / N )  of the spectrum for the Hamiltonian (1.4) for both positive and 
negative U. We have found the following. 

(i) This spectrum ((2.44) for U > 0 and (2.50) for U < 0) is not analytic in N unless 
extra conditions imposed on p and h are also satisfied (similar to the case of the 
Heisenberg chain in magnetic field or the I D  Bose gas (Woynarovich et a1 1989)). 

(ii) If the extra conditions are satisfied, the spectrum has a structure (3.7) which 
can be considered as the generalisation of (1.2) and (1.3): it looks as the finite-size 
corrections would come from two independent c = 1 fields, but this independence is 
not true, however, since both of the x depend on the state of both Fermi seas. 

(iii) There are special values of U, p and h where the two Fermi velocities coincide. 
In these points the system is conformally invariant with c = 2. The scaling indices are 
of generalised Gaussian form (3.21) (similar to that found in nested Bethe ansatz 
systems by Suzuki (1988)), and there are four marginal operators. 

In the next section we give a detailed derivation of the energy and in § 3 we discuss 
our results in detail. 
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2. The energy of a finite chain 

The Bethe ansatz equations for the Hubbard chain are 

N, sin kJ -A,  
Nk, = 2774 + 2tan-' 

p = 1  

" A, -sin k, - N\ 

2tan-'( U ) - 2 r J ,  + 2tan-' 
J = 1  p = l  

(2 . la)  

(2.lb) 

Here N,  is the total number of particles and N,  is the number of down spins, U is the 
interaction strength in units of the bandwidth U = U / 4 ,  and the quantum numbers I J  
and J,  are integers or half-odd-integers, depending on the parities of the numbers N,  
and N,: 

I ,  = N,/2 (mod 1) Ja = ( N ,  + N ,  + 1)/2 (mod 1). (2.2) 

Once these equations are solved, the energy and the momentum of the system are 
given by 

Nc 

E=-2  C C O S ~ , + / A N , + ~ ( N , - N , / ~ )  (2.3) 
J = 1  

(2.4) 

We solve these equations at U > 0 for those states which have a spectrum scaling 
like 1 /  N. (The U < 0 case can be obtained from the U > 0 one through a transformation 
(Woynarovich 1983b).) For this we choose the 4 and J,  sets as follows: we choose 
I' = ( N ,  + 1)/2 (mod 1 )  and J' = ( N ,  + N, ) /2  (mod 1 )  so that 

with D c ( s ) < ~  N. The I ,  are all the numbers equal to N s / 2  (mod 1 )  between Z+ and Z- 
while the J ,  are all the numbers equal to ( N ,  + Ns + 1 ) / 2  (mod 1) between J +  and J - .  
This corresponds to two Fermi seas with D, and D, particles moved from the left 
Fermi points to the right ones. (Later on particle-hole pairs can also be introduced 
but care must be taken that the number of holes and particles must be the same around 
all four Fermi points separately (i.e. not to change N,, N,, D, and Ds). Excitations 
with complex k and A will not be considered as they have a gap.) 

Now we define 

(2 .6)  

and 

With this notation 
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Using the formula 

(2.7) can be written in the form 

1 1 
&(IC)=- 1 -  cos(k)K',(sin k - A - )  + cos(k)  K :(sin k - A + )  

tr ( 24N2p,(A-) 24 N'p, ( A + )  

+cos(k) Kl(sin k - A ' ) p , ( A ' )  dh '  ( 2 . 1 0 ~ )  

1 
A A ) = -  - cos( k - )  K { ( A  - sin k - )  

lr ( 24N2p,(k-) 

C O S ( ~ + ) K ; ( A  -sin k + )  
1 

24N2p,(k+) 
+ 

1 1 + K;(A - A - )  - K ; ( A  - A t )  
24N2p,( A -) 24 N2p, ( A i )  

KI(A -sin k ' )pc (k ' )  dk'- K2(A - A ' ) P , ~ ( A ' )  dA' ) . (2.10b) 

Here 

U 2u 
K,(x)  = 2 - K2(x) = 2 (2.11) 

u 2 + x 2  (2u)2+x2' 

and are the derivatives of and k* and A *  satisfy the equations 

z,(k*)= I'/N z,(A*)=J*/N.  (2.12) 

These four equations (2.12), together with the definitions of p and (2.5), are equivalent 
to 

(2.13) 

(2.14) 

In the following a central role will be played by the solutions of equations of the type 

k', A*)=x,,(k)+- ci:k 
k ' , h * ) = ~ , , ( h ) + ~  J Kl(A -sin k')x,(k'lk',A*)dk' 

-- 1 K2(A - A ' ) x , ( A ' I  k*,  A * )  dh'.  

K (sin k - A ' ) x, ( h ' 1 k * , A * ) d A ' 

k +  

2 r  k -  

1 A +  
2 r  A -  

(2.15) 
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This system of equations we shall write in the symbolic form 

x ( k , A I k * , A * ) = x , ( k , A ) + K ( k , A I k ' ,  A ' ( k * , A * ) O x ( k ' , A ' l k * , A * ) .  (2.16) 

Here x ( k , A )  is a column vector with upper and lower elements x , ( k )  and x , ( A ) ,  
respectively, and K is a 2 x 2 matrix with integral-operator elements which can be read 
out from (2.15). We shall also use the equation 

y(k,A/k*,A*)=yo(k,A)+KT(k,AIk',A'Ik*,A*)Oy(k',A'Ik*,A*) (2.17) 

which is analogous to (2.15) but the integral-operator matrix KT is the transpose of 
that in (2.15): 

KT(k ,  A I k ' ,  A ' l  k', A * )  

i dA'K,(sin k -  A ' ) .  . . 0 

dk'  K,(A -sin k ' )  cos k' , . , 
(2.18) 

It is clear that 

(2.19) 

with p m ,  p1 and p2 determined by (2.16) with the inhomogeneous part xo replaced by 

respectively. 
The energy according to (2.3) and (2.9) is 

k +  A +  

E = N  J ( h , - 2 c o s k ) p c ( k ) + N h ,  J P.s(A) 
k -  A -  

2 sin k+ - -- 2sin k -  
24NPc ( k - )  

(2.21) 
1 + 

24NPc ( k +  1 
with hc = p - h / 2  and h, = h. This, using (2.19),  can be written in the form 

1 
24 N 

E = NE,(k+, k - ,  A + ,  A-)+-(E,(k+, k - ,  A + ,  A - )  

+ ~ , ( - k - , - k + , - h - , - A + ) + & Z ( k + ,  k - , A + , A - )  

+ EZ(-k-, -k+, -A-,  - A + ) )  (2.22) 
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k +  A +  ~ ~ = - ( 2 s i n  1 k i - J  ( h C - 2 c o s k ) p , , ( k ) -  J h , p , , ( A ) )  (2.24) 
PC(k+) k -  A -  

(2.25) 

E, is actually the energy density of an infinite system at the given k' and A * .  It is 
instructive to write it in another form. Since the formal solution of an equation of the 
type (2.16) is 

X 

x ( k ,  A )  = c ( K ( k ,  A I k' ,  A ' l  k', A*)O)"x0(k ' ,  A ' )  
n = l  

(2.26) 

p, will be given by (2.26) with xo replaced by the first column vector in (2.20). 
Substituting this into (2.23) one obtains that 

(2.27) 

where 
m 

E(k,  A 1 k', A * )  = 1 (KT(k ,  A I k ' ,  A ' l  k', A * ) O ) n e o ( k ' ,  A ' )  (2.28) 
n = l  

with 

h - 2 ~ 0 s  k 
E o = (  h, ) (2.29) 

i.e. e ( k ,  A )  satisfies (2.17) with yo replaced by eo .  E,(k) and & , ( A )  can be considered 
as the dressed energies. 

The infinite chain is in the ground state at the given p and h if E, is minimal with 
respect to k' and A*. This condition, using (2.27) and the integral equations determin- 
ing E,, lead to the conditions 

E,(k+/ k', A * )  = 0 (2.30) 

E,(ATlk',A*)=O E , , ( A - l  k', A * )  = O  (2.31) 

i.e. in the ground state the dressed energies are zero at the Fermi points. From symmetry 
it is clear that in the ground state k -  = - k' and A - = -A+ .  Let us denote the ground-state 
values of k+ and h i  by ko and A o ,  respectively. Now we can expand up to second 
order in (k' F k,) and ( A  * F Ao). Since the conditions (2.30) and (2.3 1) are satisfied at 
k' = * k o ,  A' = *Ao there are no cross derivatives and we find 

E,(  k-1 k', A ') = 0 

(2.32) 
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Utilising the equation for E and those for pl and p 2  it is not hard to see that with an 
accuracy of 1/ N 2  (the error coming from the O( 1/ N 2 )  difference between p and pm) 

As a next step we express (k'T k,) and ( A *  F A,) by the deviation of N,, N,, D, 
and D, from their ground-state values. For this we can use (2.13a, b). First we note 
that, since the energy contains the square of these deviations only, it is enough to 
calculate them up to 0 ( 1 / N ) ,  i.e. in (2.13~1, b) p, and p, can be replaced by p x c  and 
p m s ,  respectively. Denoting N,/ N = U,, N , / n  = v,, D,/ N = 6,, Ox/ N = a,, from 
(2.13a, b) we have 

where crl and u2 are defined by (2.16) 

0 

( 2 . 3 4 ~ )  

(2.34b) 

( 2 . 3 4 ~ )  

(2.34d) 

( 2 . 3 5 ~ )  

(2.35b) 

( 2 . 3 5 ~ )  

( 2 . 3 5 d )  

with the inhomogeneous part xo replaced by 

- cos(k)Kl(sin k - A o )  

-- &(A -a,) 
[lT 1 (2.36) 

277 



4250 F Woynarovich 

respectively. Using the formal solution (2.26) of (2.16) for u1 one can convince oneself 
that the matrix g in (2.34) is 

(2.37) 

where the g ( k ,  A )  matrix is defined through the equation 

5(k ,A)=I+KT(k,AIk ' ,A ' /*ko ,  *th,)@g(k', A ' )  (2.38) 

with I being the 2 x 2 identity matrix. This g matrix can be considered as a generalisation 
of the dressed charge (Korepin 1979). Taking the derivatives of the elements of 5 and 
reintegrating the first row from k,  to 7r and the second row from A, to infinity one 
finds that the z matrix in (2.35) is 

z=f (g ' ) - '  (2.39) 

with the upper index T corresponding to transposition. Compiling (2.22), (2.32), 
(2.33)-(2.37) and (2.39) one arrives at the energy expression correct to O ( 1 / N 2 )  

E = NEm(ko, -ko, A", -Ao)  

(2.40) 

where E ,  and are given by (2.24) and (2.25) with k'= +k,  and A* = *Ao,  and vc 
and v, are the densities of the particles and down spins, respectively, in the ground 
state of an infinite system at p and h. 

The total momentum of the system according to (2.4) and (2.5) is given by 

1 
27r 

P =- ( NCO, + N,D,?). (2.41) 

As a final step we have to deal with the excitations. As an example we treat a 
particle-hole pair around the right Fermi point of the k sea. Suppose that the particle 
and hole are characterised by the quantum numbers Ip' and I:, respectively. This 
defines their positions in the k space: 

z,( ki) = I ; /  N z,( k ; )  = I ; /  N. (2.42) 

The presence of this particle-hole pair modifies p ( k ,  A )  by -p , (k ,  A 1 k', A*)(k: - 
kl)/ N and gives a contribution to the energy e lpc(  k+) (  k ;  - kh+)/ N. According to 
(2.42) and the definition of p, pc(  k+)(  k ;  - k; )  = ( I ;  - I ; ) /  N. The momentum of such 
a particle-hole pair is 27r(I; - I:)/ N and thus, due to this excitation we have contribu- 
tions E ~ ( I ; - Z ; ) / N  and 27r (Z; - I : ) /N  to the energy (2.40) and momentum (2.41), 
respectively. This and the analogue calculations for the particle-hole excitations in 
the A sea justify the notation 

E1 = 2TVC E 2  = 2TVS (2.43) 



Finite-size eflects in a Hubbard chain 425 1 

with U, and U, being the Fermi velocities for the two Fermi seas. It is not hard to see 
that the energy and the momentum of a state with all four possible particle-hole 
excitations are 

Here 

(2.44) 

(2.45) 

(2.46) 

With I ;  ( I ; ) ,  I ;  ( I ; ) ,  Jf: ( J l )  and Jp ( J h )  being the quantum numbers of the particles 
(holes) near to the right (+ )  and left ( - )  Fermi points of the k and A seas. 

The above results are valid for the case U>O but can be easily translated for 
negative U. A way to do this is provided by the ‘complementer solutions’ of the 
Lieb-Wu equations ( 2 . 1 ~ 2 ,  b )  (Woynarovich 1983b). Suppose that in a { k j ,  A,} solution 
of these equations the k, are distributed in ( k+ ,  k - )  according to pc( k )  with holes at 
kh and particles at kp. In the complementer solution the A, are unchanged, but the 
k, set is replaced by a kg set in which there are real k and also complex k pairs. The 
real kg are distributed in (-T, k - )  and (k+, T) according the corresponding part of 
p c ( k )  ( p c ( k )  is defined by ( 2 . 7 )  for the whole (-T, T )  interval) with holes at k, and 
particles at k h ,  while the complex k, pairs are determined by the A : 

(2.47) 

The total number of kg is N + 2 N s  - N,. Also this { k g ,  A,} set will solve ( 2 . 1 ~ 2 ,  b )  of 
course with an {Zg, J & }  set different from { I j ,  J , }  (but 4 - Z, =integer and J, - J &  = 
integer). The sum of the energies and momenta of these complementer solutions is 

sin k i  = A, F iu *Im k:  > 0. 

-2  COS k , + C  -2  COS k g =  N,U 

kj +C kg = T( N + N ,  + 1). 
(2.48) 

Utilising all this one can see that the set {kg+. ir ,  -A,} will satisfy (2.1~2, b )  with U 
replaced by - U  and {4 ,  J,} replaced by { I g +  N / 2 ,  J & } .  This solution describes an 
eigenstate of the attractive chain (interaction: - U )  in which there are N f  = N - N, 
‘free’ particles and Nb = Ns bound pairs, and the total spin is S = N f / 2 .  (The parities 
of the numbers 21, + N and 25; will correspond to the periodic boundary condition 
(2 .2) ,  if in the positive U equations the quantum numbers are chosen as 4 = ( N +  N b ) / 2  
(mod l ) ;  J , = ( N b + N f + 1 ) / 2  ( m o d l )  (accordingly I * = ( N + N b + 1 ) / 2  ( m o d l )  and 
J’ = ( N f +  N b ) / 2  (mod l ) ) . )  Through (2.48) one can see that, if for the chain with -U 
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we chose p’ = ( U + h)/2 and h’ = U + 2p, the eigenstate for this attractive chain 
described by { k ,  + T,  - A a }  will have the same energy as the state {k, ,  A,} in the repulsive 
chain (1.4) (apart from a macroscopic constant). Thus, after substituting 

and (2.45), (2.48) and (2.49) gives 

(2.50) 

(2.51) 

Since 2 vs s U ,  < 1, vf + 2 vb 1 I 

3. Discussion of the energy spectrum and finite-size effects 

First we have to notice that the spectrum (2.44) is not analytic in N :  for the finite 
system in the ground state N, and N, should minimise (2.44), but since N,, N,  and 
N are integers, the optimal values of Nc and Ns are not analytic functions of N. This 
phenomenon is known already for other systems (Woynarovich et a1 1989) and is 
thought to be connected with the possibility of a consistent definition of the continuum 
limit for the system. In the present case the spectrum will be analytic if U ,  and v, are 
rational and only special values of N are allowed. To be definite, if 

v c  = P C / 9 ‘  v, = P s l q s  (3.1) 

with p c  and qc ( p ,  and q s )  being relative prime integers, then only 

N = qN’ (3.2) 

values are allowed for N, where N‘ is an integer and q is the least integer dividable 
by both qc and qs. If (3.1) and (3.2) are met, the ground-state values N, and N, are 

Nco=Pc(qlqc)~’ Nso=p,(qlq,)” (3.3) 

and in the excited states 

AN, = N, - vCN ANs = N, - v,N (3.4) 
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are integers. Whether D, and D,, are integers or half-odd integers depends on the 
parity of the numbers N, and N,. Due to the restrictions (2.2) 

0, = ( N ,  + N ,  + 1 )/ 2 (mod 1) 

D, = N,/2 (mod 1). 
(3.5) 

In the ground state both D are zero only if NCO is even and N.,, is odd (otherwise at 
least one of the two D is .ti, i.e. the ground state is degenerate). This imposes a 
restriction on the numbers p, ,  p , ,  q/q, ,  q / q ,  and N ' :  p s ,  q / q ,  and N '  should be odd, 
while one of pc and q / q ,  should be even. If these requirements are met, the finite-size 
corrections to the ground-state energy are 

(3.6) 

just as it would be in the case of two independent conformal fields. These fields are, 
however, not independent as all AN,, ANs, D, and D,, appear multiplied by both 
Fermi velocities: 

(3 .7)  

Another interesting feature is that D, and 0, are not independent of AN, and AN,, 
as even if the parameters are such that in the ground state AN, = AN, = D, = D, = 0, 
in the excited states due to (3.5) 

D, = (AN,+AN,)/2 (mod 1 )  

D, = A N J 2  (mod 1). 
(3 .8)  

Examining (2.50) analogous conclusions can be drawn for the case of the attractive 
chain. 

An important special case is when U > 0, h = 0,  i.e. the ground state is non-magnetic 
(v, = v, /2) .  From our formulae we can get this case by taking the Ao+ CO limit. This 
can be done by solving the equations for the A-dependent quantities at A >> 1 with 
Wiener-Hopf techniques and then taking the A. + CO limit. As a result one obtains that 

where 

[ = [(sin k,) 

with [(x) solving the equation 
s i n k ,  

[(x) = 1 +- I R(x-x')[(x ')  dx' 
2.ir -sin ko 

(3.9) 

(3.10) 

(3.11) 
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In this case (2.44) and (2.45) simplify to 

and 

277 277 
N N 

P = - NCO( 0, + 0 , / 2 )  +-- [AN, (0, + 0, /2)  + n: + n i] 

27r 
N 

+ - ( - - s ~ , + n d - n ; )  

with 
S =  N,/2- N,, 

(3.12) 

(3.13) 

(3.14) 

It is also interesting to give the Fermi velocities in this limit: 

Here p , ( k )  and EL(k) satisfy the equations 
1 1  k0 

p,(k)=-+-cos(k) K(sin k-sin k ' ) p , ( k ' )  (3.16) 
27r 27r I, 

and 

1 
27r 

~ j ( k ) = 2 s i n  k+-cos(k) B(sin k-sin k ' ) ~ L . ( k ' ) .  (3.17) 

For the negative U case the ho+m limit corresponds to the half-filled band 
vf+2Vyb= 1.  

We have to comment also on the k,+ 7r limit. For the positive U case this 
corresponds to the half-filled band. In a strictly half-filled band N, = N, and there are 
no such charge excitations as described in this work since there is no place for the 
particles (for N, = N the only possible charge excitations are those with complex k, 
but those have a gap). It is possible to create such particle-hole excitations only if 
first N, is decreased, i.e. a AN, < 0 is introduced. Even in this case, however, we do 
not get a contribution to the energy as U, = 0 if ko = 77 (indicating that the spectrum is 
quadratic, i.e. the excitation energy 0(1/N2). If U is negative, the ko= 7~ limit 
corresponds to the zero magnetisation, i.e. to states with no 'free' particles, only bound 
pairs. It is possible to break up pairs to create free particles and this does not cost 
large amounts of energy since the magnetic field and chemical potential are such that 
both the bottom of the band for the free particles and the Fermi points of the sea of 
bound pairs are at zero. The fact that U, = 0 indicates that the spectrum of the free 
particles is quadratic, as it should be at the bottom of a band. 

An important case is when v, = U, : in this point the model is conformally invariant 
with c = 2. In the Hubbard model (1.4) there are three parameters U, p and h, or 
equivalently U, v, and v,. In principle one can define through the equation 

(3.18) U,( U, V c ,  Vs) = U,( U, V', VC) 
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a function U(v,, U,) which gives the value of U where (3.18) is satisfied at the given 
v, and v,. Not all (v,, v,) pairs define such a U, but for a certain part of the 
0 < 2v, s v, < 1 parameter space such a U can be found. (An example for this is the 
v, = v,/2 case, where for v,+O (ko+O), v , / u c + O ,  while for v, + 1 ( k o +  T), v, /v ,+00 
at any U (see (3.15)), so there is a v, to any U where v, = v,. This means that there 
is a whole range in O <  v, < 1 where, with v, = v,/2, (3.18) can be satisfied.) In those 
points, where vc and v, are rational and satisfy the requirements discussed in the first 
paragraphs of this section, the model has a conformally invariant continuum limit with 
c = 2, provided U is chosen according to (3.18). In this case the scaling indices of the 
primary operators are 

+ (("" Nc  - " I A  N s  + ( t2, D, + D s ) 2 )  
4(det [)2 

(3.19) 

s(AN,,AN,,  D, ,  Ds)=ANcDc+ANsDs 

with AN,, AN, being integers, and D,, D,  satisfying ( 3 . 8 ) .  It is worth noting that 
(3.19) is a generalisation of the Gaussian form: with the notation 

we have 

x(AN, D )  = aANTX-'AN + D'XD 

s(AN, D )  = AN'D. 

(3.20) 

(3.21) 

In addition to the above operators, there is a class of operators with AN = D = 0 and 

(3.22) x =  n b + n ; + n f + n ;  s = nb - n ; +  n f  - n ; .  

It is remarkable that four of them are marginal (x = 2; s = 0). Although we cannot 
read out the scaling indices from the spectrum directly if v, # o.~, we expect that some 
of these operators are marginal even if 0, f U,. The reason for this is that in the most 
general ID  model of spin-4 fermions there are several coupling constants and the model 
is critical in a whole region of a four-dimensional parameter space (for a review see 
S6lyom 1979). Thus there must be a set of marginal operators which govern the motion 
of the Hamiltonian in this parameter space. The Hubbard model is one special line 
parametrised by U in the critical region of the more general model, and the operator 
which, by adding it to the Hamiltonian, changes the value of U can be constructed 
readily: 

(3.23) 

where a k / a u  and ahlau are partial derivatives at fixed U, and v,. This operator does 
not change the complete integrability of the model. Nevertheless-if U was such that 
o, = 0,-it drives out the system from the conformally invariant point. The operators 
driving the system off the Hubbard line are not present explicitly in the Hubbard 
Hamiltonian. Nevertheless they should also be marginal. 
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